

Highly Stereoselective Preparation of 3,3-Disubstituted Acrylates on Polyethylene Glycol

Carsten G. Blettner^{a,b}, Wilfried A. König^a, Wolfgang Stenzel^b, Theo Schotten^b

^a Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany ^b Lilly Forschung GmbH, Wiesingerweg 25, D-20253 Hamburg, Germany

Received 15 October 1998; revised 10 January 1999; accepted 12 January 1999

Abstract:

The highly stereoselective preparation of sterically hindered (E) and (Z)-3,3-diaryl acrylic acid esters using a parallel synthesis approach is described. The liquid phase reaction utilises polyethylene glycol monomethyl ether 5000 (mPEG 5000) as a soluble polymeric support and phase-transfer agent. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Stereoselection; Polymer support; Heck reactions; Wadsworth-Emmons reactions

The palladium mediated coupling reaction of aryl and vinyl halides with olefins (Heck reaction) constitutes an important tool in organic synthesis [1]. Recently, we demonstrated the palladium catalysed vinylation of polyethylene glycol (PEG)-bound arylic halides [2] in liquid phase synthesis [3]. Preparations of trisubstituted olefins have been rarely investigated [4, 5]. Herein, we report the liquid phase parallel synthesis of ortho-, metaand para-substituted 3,3-diaryl acrylic acids via a sequence of (E)-stereoselective Wadsworth-Emmons and highly stereoselective Heck reactions. Diethylphosphonoacetic acid esterified with polyethylene glycol 5000 monomethyl ether (mPEG 5000) was prepared in 93% yield following literature procedures [6, 7]. Mild and highly stereoselective (E)-olefination of 1 was accomplished with DBU and LiCl [8]. Quantitative arylation of the polymer-bound 3-substituted acrylic acids 2a-f was obtained at 145°C under Jeffery-Larock conditions (Pd(OAc)₂, NaHCO₃, n-Bu₄NBr, DMF, Δ) [9] to give **4a-n**, but n-Bu₄NBr detrimentally affected the purification of the polymer via the precipitation method [3]. We found that no additional phase-transfer agent was necessary for the synthesis of 4a-n. Due to the intrinsic autocatalytic properties of the PEG-bound starting material, the esterified PEG was utilised as combined polymeric support and phase-transfer agent [2, 10]. Increasing isomerisation of the initially stereodefined alkene at higher temperatures has been reported in Heck reactions, especially if electron-donating substituents are present [5]. Surprisingly, we found that the diastereomeric ratio of starting mPEG esters 2a-f was essentially maintained in many cases during the Heck reaction even under prolonged heating (3d) at 145°C. Under these conditions highly stereoselective reactions were observed with an ortho-substituent present in 3-aryl acrylates 2a-e. The Heck reaction of 2a with three different aryl iodides predominantly resulted in the Z-products, as indicated by NOESY measurements. Even higher stereoselectivity was observed with the sterically hindered 1-naphthyl- (2b), 2-tolyl- (2c), and 2,4dichlorophenyl- (2d) substituted acrylic acids. H-NMR measurements indicated identical ratios of diastereoisomers of the Heck products and the corresponding starting materials 2b-d. Acrylates without orthosubstituent (2e, 2f) still showed some stereoselectivity in the Heck reaction, but a Z/E ratio of 83/17 could not be exceeded.

Table 1: Stereoselective Synthesis of 3,3-diaryl acrylic acid esters ³

Entry	2	-R	-R´	4	Z/E Ratio ^a	Yield of 4 [%]
1	2a	2-Methoxyphenyl	4-Tolyl	4a	98/2	91
2	2b	1-Naphthyl	4-Tolyl	4 b	>99/1	89
3	2c	2-Tolyl	4-Tolyl	4c	>99/1	94
4	2d	2,4-Dichlorophenyl	4-Tolyl	4d	>99/1	93
5	2e	4-Pyridyl	4-Tolyl	4e	74/26	82
6	2a	2-Methoxyphenyl	4-n-Butylphenyl	4f	99/1	94
7	2c	2-Tolyl	4-n-Butylphenyl	4g	<1/99	98
8	2d	2,4-Dichlorophenyl	4-n-Butylphenyl	4h	>99/1 ^{c.}	92
9	2f	Cyclopropyl	4-n-Butylphenyl	4i	17/83	95
10	2a	2-Methoxyphenyl	4-Methoxyphenyl	4j	98/2°	94
11	2b	1-Naphthyl	4-Methoxyphenyl	4k	<1/99	95
12	2c	2-Tolyl	4-Methoxyphenyl	41	<1/99	94
13	2d	2,4-Dichlorophenyl	4-Methoxyphenyl	4m	>99/1	88
14	2e	4-Pyridyl	4-Methoxyphenyl	4n	83/17	89

The Z/E ratios refer to the Heck reaction only and are corrected by the Z/E ratios of the starting acrylic acids 2a-f. For >99/1, exclusively the (Z)-isomer and for <99/1 exclusively the (E)-isomer was detected by ¹H-NMR. ^b Confirmed by NOESY experiments.

We assumed that the polymeric support additionally improved the stereoselectivity of the Heck reaction. Thus, isomerically pure (*E*)-2-methoxyphenyl acrylic acid methyl ester (as indicated by ¹H-NMR) was conventionally reacted with 4-iodo toluene under identical Heck conditions (2.5 eq. Bu₄NBr, 145°C, 20h). The relative *Z/E* ratio of the so obtained 3-(2-methoxyphenyl)-3-(4-tolyl)-acrylic acid methyl ester was 90/10 *versus* a *Z/E* ratio of 98/2 of the polymer-bound product (4a, entry 1). This result, indeed, indicates an influence of the mPEG 5000 support.

References

- [1] Heck RF. Org. React. 1982;27:345-390.
- [2] Blettner CG, Schotten T, Stenzel W, König WA. Proceedings of the 5th Internatl. Symp. on Solid Phase Synthesis and Combinatorial Chemical Libraries- London, 1997; In press.
- [3] Vandersteen AM, Han H, Janda KD. Molecular Div. 1996; 2: 89-96.
- [4] Moreno-Mañas M, Pleixats R, Roglans A. Synlett 1997; 1157-1158.
- [5] Moreno-Mañas M, Pérez M, Pleixats R. Tetrahedron Lett. 1996; 41: 7449-7452 and references cited therein.
- [6] Cooke MP, Biciunas KP. Synthesis 1981; 283-285.
- [7] Zalipsky S, Gilon C, Zilkha A J. Macromol. Sci. Chem. A21 1984; 839-845.
- [8] Blanchette MA, Choy W, Davis JT, Essenfeld AP, Masamune S, Roush WR, Sakai T. Tetrahedron Lett. 1984; 25: 2183-2186.
- [9] Larock RC; Babu S. Tetrahedron Lett. 1987, 25: 5291-5294.
- [10] Sauvagnat B, Lamaty F, Lazaro R, Martinez J. Tetrahedron Lett. 1998; 39: 821-824 and references cited therein.

³ Representative Heck Reaction (4a, entry 1): To 1g 2a in 5 ml DMF 4-methoxyiodobenzene (234 mg, 1 mmol), Pd(OAc)₂ (22.5 mg, 0.1 mmol) and NaHCO₃ (42 mg, 0.5 mmol) were added under argon and stirred at 145°C for 20h. The mixture was centrifuged, the liquid precipitated into 80 ml ice cold MTBE and centrifuged again. The polymer was re-dissolved in 5 ml CH₂Cl₂ and the precipitation step repeated twice. White crystals. ¹H-NMR (500 MHz, CDCl₃) δ 7.36 (t, J = 5.00 Hz, 1H), 7.28-6.96 (m, 5H), 6.82 (d, J = 8.74 Hz, 2H), 6.19 (s, 1H), 4.12 (t, J = 4.13 Hz, 2H), 3.81-3.51 (m, PEG), 3.38 (s, 3H). Yield: 91%.